

スタンレー ドットマトリックス・キャラクタタイプLCDモジュール

GMD1620BLY **GMD1621BLY**

概要

GMD162*BLY(16文字2行)は、LCD、CMOSドライバ、コントローラLSI、 よりなるドットマトリクスLCDモジュールです。

このモジュールは、英数字文字の表示が可能な5×7のドットマトリクスが使用されており、 コントロール、リフレッシュ、ディスプレイ等のあらゆる機能は、ボード上のコントローラによって 操作されます。

さらに、160種類のJIS準拠文字を表示することができます。 入出力は、4ビットまたは8ビットのMPUにインターフェイスする事ができ、豊富なコントロール コマンドを使って文字表示や表示シフト等を簡単に実行できます。

また、キャラクタジュネレータRAMの内蔵により、ユーザーの自由なパターンを表示させることが 可能です。

環境対応品 : 2003年2月発効のRoHS指令に準拠。

• GMD 1 6 2 0 B L Y 最良視認方向: 6時 • GMD 1 6 2 1 B L Y 最良視認方向: 12時

特長

- ・コントロールLSIを内蔵(各種コントローラコマンドあり)
- ・文字構成は、5 x 7 ドット、カーソル付き
- ・キャラクタジェネレータROM内蔵・・・5×7ドット(英数文字96文字、カタカナ64文字)
- ・キャラクタジェネレータRAM ・・・5×7ドット(ユーザーの自由なパターンが可能8文字)

製品仕様

項目	仕 様	単 位
表示文字構成	1 6 文字(W) X 2 行 (H)	-
外形寸法	85.0(W) X 36.0(H) X 15.0(D)	mm
有効表示範囲	63.5(W)X15.8(H)	mm
文字寸法	3 . 2 0 (W) X 5 . 5 5 (H)	mm
ドットピッチ	0 . 6 5 (W) X 0 . 7 0 (H)	mm
LCDモード *1	TNモード 反射透過型ポジティブ	-
デューティー比	1 / 1 6	duty
バックライト	LED(イエローグリーン)	1
インターフェイス	4または8ビット MPU	-
重量	約40	g

* 1:液晶パネルの色調は、特性上環境温度により変化します。

2006.12.21 Page.1

絶対最大定格

環境条件

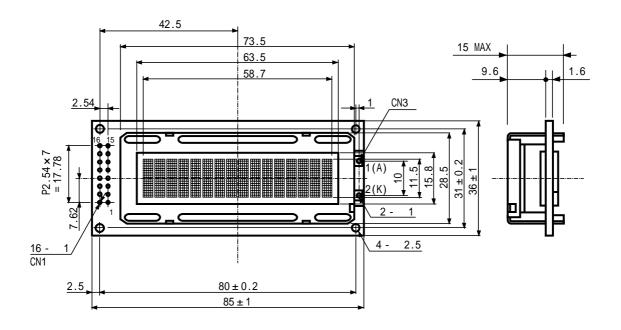
項目		最小 最大		備考
周囲温度	動作	0	+ 50	-
(= T a)	保存	- 20	+ 70	-
湿度		注記	結露無きこと	
振動		JIS C 60068-2-6	信頼性試験項目参照	
衝撃		JIS C 60068-2-2	信頼性試験項目参照	
腐食ガス		無き	こと	-

注:Ta +40

90%RH max.

Ta>+40

絶対湿度が Ta = + 40 90% R H以下の条件であること.


電気的条件

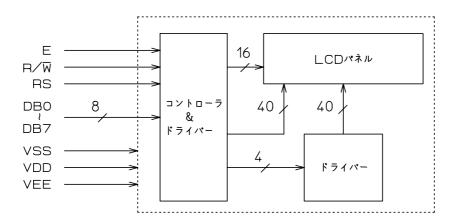
 $(Ta = 0 \sim +50)$

項目	記号	最小	最大	単位	備考
ロジック用電源電圧	VDD-VSS	0	7	V	
ロジック用入力電圧	VI	VSS	VDD	V	
液晶駆動用電源電圧	VDD-VEE	0	13	V	

外形図

指示なき公差は、±0.5mm 板金表面処理:電着黒塗装

電気的仕様

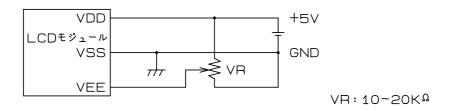

電気的特性 - 液晶駆動部

$(Ta = 0 \sim + 50$	、 dut	y = 1 / 16
---------------------	-------	------------

項目	記号	最小	標準	最大	単位	備考
ロジック用電源電圧	VDD-VSS	4.75	5.0	5.25	V	-
入力Hレベル電圧	VIH	2.2	-	VDD	V	ı
入力 L レベル電圧	VIL	-0.3	-	0.6	V	-
出力Hレベル電圧	VOH	2.4	-	-	V	*1
出力 L レベル電圧	VOL	-	-	0.4	V	*2
電源電流	IDD		1.0	3.0	mA	*3
液晶駆動用電源電圧	VDD-VEE	3.0	-	11.0	V	-

* 1 : - I O H = 0 . 2 0 5 m A * 2 : I O L = 1 . 2 m A * 3 : V D D - V S S = 5 V

ブロックダイヤグラム



DD RAMアドレス

	1	2	3	4	5	 12	13	14	15	16
LINE1	00	01	02	03	04	0B	00	OD	0E	0F
LINE2	40	41	42	43	44	4B	4C	4D	4E	4F

RAMエリア:00H~27H & 40H~67H(16進)

電源接続例

<u>2006.12.21</u> Page.3

電気的特性 - 端子機能

CON1, CON2

Pin No.	信号	I/O	機能
1	VSS	-	GND: 0V
2	VDD	-	+ 5 V
3	VEE	-	液晶駆動電圧
4	R S	入力	レジスタ選択信号 " 0 ": インストラクションレジスタ(書き込み) ビジーフラク゛ アドレスカウンタ(読み出し) " 1 ": データレジスタ(読み出し / 書き込み)
5	R/W	入力	読み出し(R) 書き込み(W)選択信号 " O ": 書き込み MPU LCD モジュール " 1 ": 読み出し MPU LCD モジュール
6	Е	入力	データ読み出し書き込みの起動信号
7	DB0		T /> 4 1/- 0 -
8	DB1	入出力	下位4桁のデータバスは、双方向性を持ち MPU と LCD モジュール間のデータ転送に使用されます。
9	DB2	ДЩЛ	これらは、4ビット動作の時は、使用されません。
1 0	D B 3		5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
1 1	DB4		
1 2	D B 5	入出力	上位4桁のデータバスは、双方向性を持ちMPUと LCD モジュール間のデータ転送に使用されます。
1 3	DB6	ΛЩЛ	DB7は、ピジーフラグとしても使用できます。
1 4	D B 7		
1 5	(A:LED, +)	-	* 1
1 6	(K:LED, 1)	-	* 1

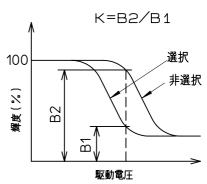
- 注)モジュールでは、4/8 ビット両方のMPUにインターフェースできるようにデータ転送は、4 ビット 2 回または、8 ビット 1 回のどちらでも行えます。
 - (1)インターフェースデータ長が4ビットの場合には、データはDB4~DB7の4つのバスのみを使って転送され、DB0~DB3のバスは使われません。モジュールとMPU間のデータ転送は、4ビットのが2回転送されると完了します。上位4ビットのデータ(インターフェースデータ長が8ビットの時のDB4~DB7の内容)の転送が行われ、それから下位4ビット(インターフェースデータ長が8ビットの時のDB0~DB3の内容)の転送が行われます。
 - (2) インターフェースデータ長が8ビットの場合には、データは、DBOからDB7の 8つのデータバスを使って転送されます。
- * 1:CON3のNo.1、2の穴に端子を用いてLCD用PWB(裏)の穴とLED用PWB(表)の端子を半田付けすることによりCON1のNo.15,16からLEDを点灯させることが出来ます。またCON2は、No.1~14のみで、No.15,16の端子(LED用の端子)はありません。

C O N 3

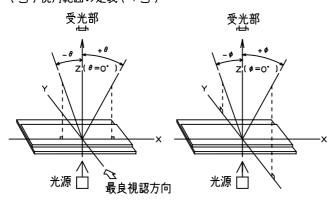
_	0113			
	Pin No.	信号	I/O	機能
	1	A: LED, +	-	LEDバックライト正電源
	2	K:LED,-	-	LEDバックライト負電源

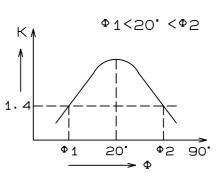
光学特性

液晶パネル特性


//X HI / / / / / / / / / / / / / / / / / /							
項目	記号	最小	標準	最大	単位	温度	条件
液晶駆動用		3.4	3.7	-	V	50	=20 ° , =0 °
電源電圧	VDD-VEE	•	4.3	-	V	25	=20 ° , =0 °
(1/16duty)		-	4.8	5.0	V	0	=20 ° , =0 °
立ち上がり時間	r	•	95	190	msec	25	=20 ° , =0 ° * 1
立ち下がり時間	d	ı	150	300	msec	25	=20 ° , =0 ° * 1
コントラスト比	K	3	ı	-	-	25	=20°, =0°*2
視角	1- 2	20	-	-	0	25	=0°,K=1.4 * 3
1元月		± 30	1	-	0	25	=20 ° ,K>1.4 * 3

注)上記特性は、LCDパネル単体で測定しております。 付近に発熱源(LED等)がある場合は、温度上昇を考慮してください。


(1)応答速度の定義(*1)



(2)コントラスト比の定義(*2)

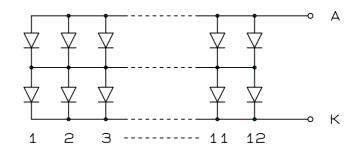
(3)視角範囲の定義(*3)

2006.12.21 Page.5

<u>LEDバックライト</u>


絶対最大定格

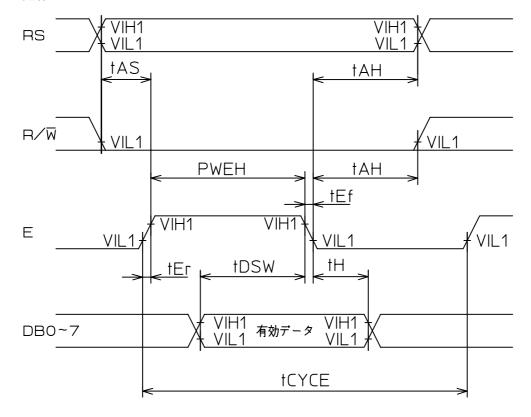
			(Ta = 25)
項目	記号	定格值	単位
順電流(*)	IF	300	mA
逆電圧	VR	8	V
許容損失	PD	1380	mW


電気・光学特性

				(Ta = 25)
項目	記号	条件	標準	最大	単位
順電圧	VF	IF=120mA	4.2	4.6	V
逆電流	IR	VR=8V	-	0.2	mA
輝度	L	IF=120mA	160	-	cd/m2
発光波長	р	IF=120mA	570	-	nm

* Ta = 25 以上の順電流絶対最大定格は、下図による。

回路構成 ・2シリーズ×12パラレル=24チップ

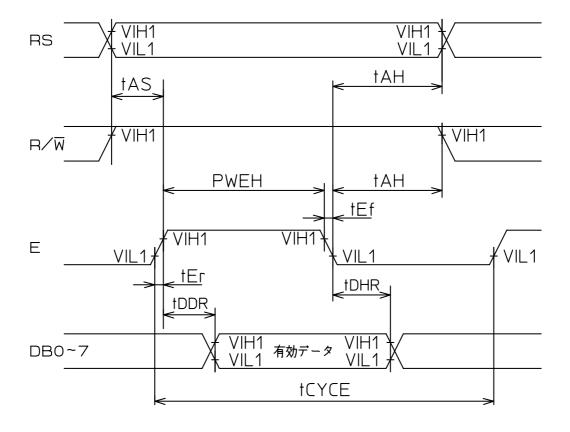

2006.12.21 Page.6

<u>インターフェースタイミング</u>

ライト動作シーケンス

項目	記号	測定条件	最小	標準	最大	単位
イネーブルサイクル時間	tCYCE	下図参照	500	-	-	nsec
イネーブルパルス幅	PWEH	下図参照	230	-	ı	nsec
イネーブル 立ち上がり時間	tEr	下図参照	-	-	20	nsec
イネーブル 立ち下がり時間	tEf	下図参照	-	-	20	nsec
セットアップ。時間	tAS	下図参照	40	-	-	nsec
アドレスホールド時間	t AH	下図参照	10	-	-	nsec
データセットアップ時間	tDSW	下図参照	80	-	ı	nsec
データホールド時間	tΗ	下図参照	10	-	-	nsec

ライト動作タイミング



2006.12.21 Page.7

リード動作シーケンス

項目	記号	測定条件	最小	標準	最大	単位
イネーブルサイクル時間	tCYCE	下図参照	500	-	-	nsec
イネーブルパルス幅	PWEH	下図参照	230	-	-	nsec
イネーブル 立ち上がり時間	tEr	下図参照	-	-	20	nsec
イネーブル 立ち下がり時間	tEf	下図参照	-	-	20	nsec
セットアップ。時間	tAS	下図参照	40	-	-	nsec
アドレスホールド時間	t AH	下図参照	10	-	-	nsec
データセットアップ時間	t DDR	下図参照	-	-	120	nsec
データホールド時間	t DHR	下図参照	5	-	-	nsec

リード動作タイミング

インストラクション一覧

インストラクション一覧表

実行時間	(max)	1.52mS	1.52mS	S#06	30 m S	S#06	S#06	30 nS	S#06	S#0	S#06	30 mS	
	影 坍	全表示クリア後、アドレスカウンタにDDFAMの O番地をセットします。	アドレスカウンタにDD BAMのO番地をセット します・シフトしていた表示も元へ戻します。 DD FAMの内容は変化しません。	カーン作の進む方向、表示をシフトするかどうかの 剪定を行います。 サータの書きなみ及びデータの読み出し時に上記の 動作が行われます。	全表示のオン/オフ(□)、カーソルのオン/オフ (□)、カーソル位置の文字プリンク(B)をセット します。	□□ FAMの内容を変えずカーソルの移動、表示の >フト動作を行います。	インターフェイスデータ(DL)、表示行数(N)、 文字フォント(F)を設定します。	CG HAMのアドレスをセットします。このあと 送受するデータは、CG HAMのデータです。	□□ HAMのアドレスをセットします。このあと 送受するデータは、□□ HAMのデータです。	内部動作中を示すビジィフラグ(BF)及びアドレス カウンタの内容を読み出します。	DD FAMまたはCG RAMにデータを書き込みます。	DD HAMまたはCG HAMにデータを読み出します。	DD RAM:表示データRAM CG RAM:キャラクジェネレータRAM ACG:CG RAMのアドレス ADD:DD RAMのアドレス ACC:アドレスカウンタで、DD RAM、CG RAMの画方に使います。
	DBO	1	*	S	m	*	*						() 中。
	DB1	0	⊣	I/D	ပ	*	*						√ 遭 ⊗ · · · · · · · · · · · · · · · · · · ·
	DB2	0	0	7		R/L	ட	ACG	_		t a	ra	ア カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ
	DB3	0	0	0	1	3/C	z	Ă	ADD	AC	Da	Data	I / D=1: インクリメント、I / D=0: デクリメント. S=1: 表示シフトを伴います。 S/C=1: 表示のシフト、S/C=O: カーソルの移動・ B/L=1: 右シフト、B/L=O: 左シフト。 DL=1: Bピット、DL=O: 4ピット。 N=1: 2行、N=O: 1行・ BF=1: SX10 ドット、BF=O: インストラクッョン受け付け可。
1 54	DB4	0	0	0	0	1	Ы				ite	Read	** T / D = O : デ ** S / C = O : カー / L = O : 在シフト = O : 4 ピット・ デ= O : 5 × フド = O : インストラ
'	085	0	0	0	0	0	7				M	ď	イ・ボ・ボ・ス・ボ・ボ・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・
	DB6	0	0	0	0	0	0	-					クトラー シャーン かん し し し し
	DB7	0	0	0	0	0	0	0	1	HH.			I/D=1:A > 0 X > h、 $I/D=0$ $S=1:$
	R∕W	0	0	0	0	0	0	0	0	1	0	1	C
	RS	0	0	0	0	0	0	0	0	0	1	1	
	イン人トフクション	表示クリア	カーソルホーム	エントリーモードセット	表示オン/オフ コントロール	カーソル/表示シフト	ファンクションセット	CG RAMPFLZ	DD RAMPFLZ	ビジィフラグ/アドレス 読み出し	データ書き込み	データ読み出し	

<u>CGRAMアドレスと文字コード(DDRAM)および文字パターン(CGRAM)との関係</u>

			1
文字コード (DDRAMdata)	CGRAMアドレス	文字コード (CGRAMdata)	
76543210	543 210	76543210	
上位ビット 下位ビット	上位ピット 下位ピット	上位ビット 下位ビット	
0000*000	000 001 010 011 100 101 110 111	***11110 10001 10001 111110 10100 10010 ***0000	文字パターン例 (1) カーソル位置
0000*001	000 001 010 011 100 101 110 111	***\\\ \begin{array}{c ccccccccccccccccccccccccccccccccccc	- 文字パターン例 (2) カーソル位置
0000*111	111 100 101 110 111	***	

*:無効(Don't Care)

注)

- 1.文字コードビット0~2とCGROMアドレスビット3~5が対応します。(3ビット:8種)
- 2. CGRAMアドレスビット0~2が、文字パターンの行位置を指定します。 8行目はカーソル位置で、カーソルと論理和をとって表示されます。 したがってカーソル表示を行う場合には、カーソルの表示位置に相当する8行目のデータを "0"にしておく必要があります。8行目のデータが1の場合には、カーソルの有無に 関係なく、1ビットが点灯します。
- 関係なく、1ビットが点灯します。
 3.文字パターンの列位置は、CGRAMデータビット0~4と対応し、図示の位置関係(ビット4が左端)となります。CGRAMデータビット5~7は、表示に使われませんが、メモリは存在しているので一般のデータRAMとして使えます。
- 4.上表に示したように、CGRAMの文字パターンは文字コードビット4~7がすべて"0"で選ばれます。しかし、文字コートビット3は無効のビットになっていますので、例えば、文字パターン例の"R"表示は、文字コード"00"(16進)または"08"(16進)で選ばれます。
- 5. CGRAMデータ"1"が、表示上の選択、"0"が非選択に対応します。

<u>2006</u>.12.21 Page.10

文字コードと文字パターンとの対応表

Higher													
Higher 4bit Lower 4bit	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
XXXX0000	CG RAM (1)						1000		00000		000 000 000		
XXXX0001	(2)							E			B		
XXXX0010	(3)												
XXXX0011	(4)												
XXXX0100	(5)												
XXXX0101	(6)	88						88			800		
XXXX0110	(7)									000	00000		
XXXX0111	(8)										8		
XXXX1000	(1)						~	4					
XXXX1001	(2)	0000								0000		œ 8	
XXXX1010	(3)		88 88		8000		000ga					• gaaa e	
XXXX1011	(4)		88 98				8					88	
XXXX1100	(5)	88					8		8 8 8				
XXXX1101	(6)	00000	00000	8			8.	88		~~ ₈	B B		00000
XXXX1110	(7)	##	BOOG							00000 8 8 8			
XXXX1111	(8)	-0-0-			00000		-8	888					

リセット機能

内部リセット回路を使って電源をONにした時、モジュールは自動的に初期設定(リセット)を行います。初期設定では次のインストラクションを実行します。

ビジィフラグは、初期設定が終わるまでビジィ状態(BF=1)に留まり、その時間は、15msです。

・表示クリア

・機能設定

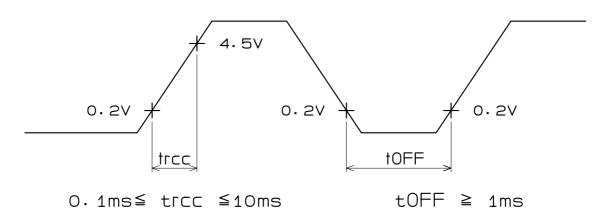
DL=1: インターフェースデータ長 8ビット

N = 0: 1行表示

F = 0: 5 x 7 ドット

・ディスプレイ ON/OFFコントロール

D = 0: ディスプレイ OFF C = 0: カーソル OFF

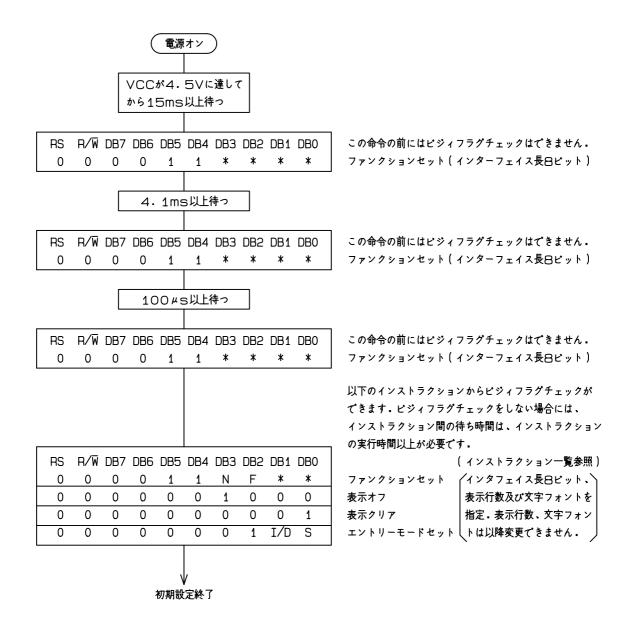

B = 0: 点滅 OFF

・入力モード設定

I/D=1: +1(ADJJJJ)

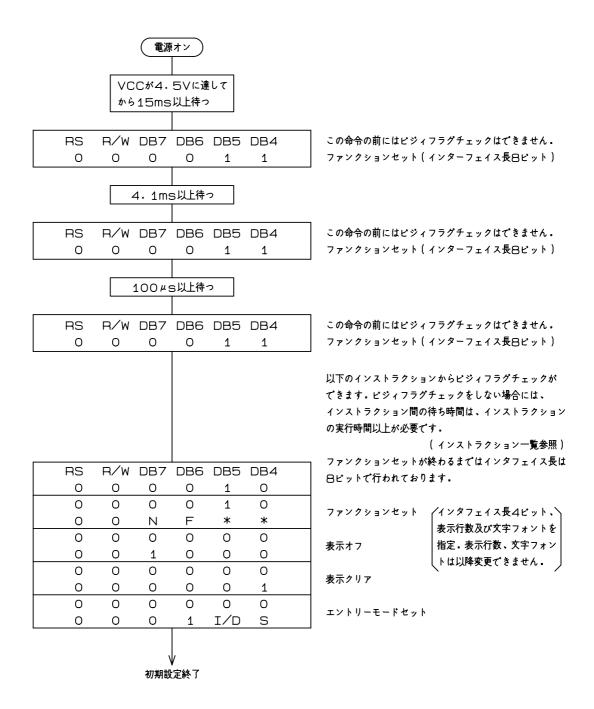
・DDRAMが選択されています。

電源がONになる時、電源の立ち上がり時間によって初期設定が完全に行われない場合がありますので、以下の時間的関係に注意してください。


tOFFは電源の遮断あるいはON,OFFを繰り返すときの電源がOFFしている時間を 規定します。

注)上の電源条件が満たされていない場合、内部リセット回路は正常な動作を行わない場合があります。

インストラクションによる初期設定


内蔵リセット回路が正しく動作するための電源条件が満足されない場合には、インストラクションにより初期設定を行う必要があります。初期設定は以下の手順に従ってください。

インターフェース長が8ビットのシステムの初期設定

<u>2006</u>.12.21 Page.13

インターフェース長が4ビットのシステムの初期設定

<u>2006</u>.12.21 Page.14

信頼性試験

信頼性試験項目

No.	試験項目	試験条件	試験時間
1	高温動作試験	Ta=+50 全on表示 (定格標準値動作)	2 4 0 時間
2	高温放置試験	Ta=+70 (無通電)	2 4 0 時間
3	低温放置試験	Ta=-20 (無通電)	2 4 0 時間
4	高温高湿試験	Ta=+40 、RH=90% (無通電)	2 4 0 時間
5	温度サイクル試験	-20 (30 分) +25 (5 分) +70 (30 分) ↑ +25 (5 分) ← (無通電)	1 0 サイクル
6	振動試験	周波数範囲 : 10~55Hz 全振幅 : 1.5mm 掃引の割合 : 10~55~10 約1分 規格 : JIS C 60068-2-6:1999 (無通電)	x,y,z各方向 : 2 時間 (計 6 時間)
7	衝擊試験	ピーク加速度:50×9.8m/s ² 作用 作用時間:11msec 正弦半波 規格:JIS C 60068-2-27:1995 (無通電)	± x, ± y, ± z 各方向 3 回

故障判定基準

液晶モジュール検査装置および目視にて検査

a)表示の誤動作および不点灯があった場合

b)構成部品の破損、変形があった場合

使用上の注意事項

取り扱い上の注意

- ・液晶パネルは、ガラス製品のため強い衝撃を加えると破損します。 落としたり、機械的衝撃を加えたりしないよう充分注意してください。
- ・表示面に使用している偏光板は傷つきやすいので、ピンセットや工具などの硬いものを 当てたり、押したり、こすったりしないよう充分注意してください。
- ・偏光板は有機溶剤によって侵されることがありますので、表示面が汚れた場合にはセロハン テープでごみを吸着するか、脱脂綿等の柔らかい布に希釈した中性洗剤を含ませ軽く拭き 取ってください。
- ・水滴などが長時間付着すると変色やシミの原因ともなりますので、すぐに拭き取ってください。
- ・液晶パネル内部の液体(液晶)は有害物質です。液晶パネルが破損した場合、流出した液晶を 口に入れないでください。また、皮膚や衣服についた場合は石鹸で洗い流してください。
- ・静電気によるLSI、LED等の破損を防止するために、LCDパネル表面の保護シートを 取り除くときにはアースバンド等の静電対策を行ってください。
- ・本製品は、空調させた振動のおよび衝撃の無い室内で使用される機器を目的に設計されており ます。その他の環境下でのご使用は避けてください。
- ・液晶モジュール内には、ヒートシール、TCP(Tape Carrier Package)等のフィルム類を 使用しております。
- 傷つけないよう充分注意してください。傷ついた場合は、正常に表示をしない場合があります。
- ・以下の液晶モジュールは、ラバーコネクタを(導電性ゴム)を使用した構造となっております ので、取り扱い時に"そり"を与えないようにしてください。

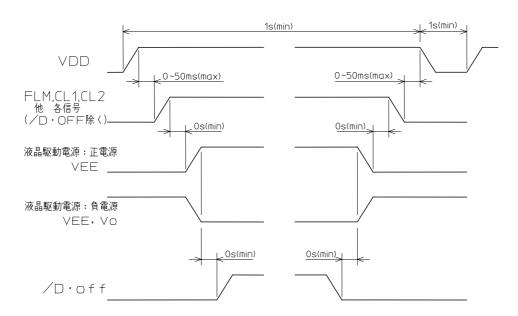
対象液晶モジュール: GMD1620B、GMD1621B、GMD1620BLY、GMD1621BLY、GMD1620BSLY、GMD1621BSLY

: GMD2020B、GMD2021B、GMD2020BLY、GMD2021BLY、GMD2020BSLY、GMD2021BSLY

: GMF32024ABTW、GMF32024BSLY、GMF64020ABTW

保管上の注意

- ・高温、高湿下では偏光度劣化を起こしたり、気泡発生や偏光板剥がれが発生することがあり ますので使用、保存は避けてください。
- 保存の際には、直射日光や蛍光灯の光を避け、出荷時の梱包のまま、あるいは導電性ポリ袋に
- 収納し、温湿度は、 $Ta=+5\sim+30$ 、 $RH=30\sim70\%$ を目安に保存してください。・乾燥を防ぐため加湿器等を使用する場合、水道水を使用すると水道水に含まれる塩素により 不具合が発生する可能性があります。純粋や蒸留水を使用してください。
- ・直射日光が当たる場所や暖房設備の近辺など、高温になる場所での保管は避けてください。
- ・急激な温度変化のある場所では水分の結露が起こりますので、温度変化の少ない場所(直射 日光や強い照明の当たらない場所)にて保管してください。
- ・粉塵や腐食性ガス(排気ガスや煙、化学薬品等に含まれる窒素酸化物、硫黄酸化物) 塩分の 無い場所にて保管してください。
- ・放射線、静電気、強磁界にさらされない場所にて保管してください。


使用上の注意

- ・電源を入れたままメインシステムにモジュールを接続したり、取り外したりしないでください。
- ・保存温度範囲を越えた場合、動作規定温度内に戻しても正常に動作しない場合がありますので 注意してください。
- ・光学特性(視角範囲、コントラスト)は、液晶駆動電圧により変化します。 液晶駆動電圧は、最適コントラストになるよう調整してください。

液晶駆動電圧(VDD-Vo): GMF32024ABTW、GMF32024BSLY、GMF32024HBTW、GMF32024HFTW GMF64020ABTW

液晶駆動電圧(VEE-VSS): GMF32024JBTW、GMF32124JBTW、GMF32024JFTW、GMF32124JFTW GMF32024KFTW、GMF32124KFTW

- ・液晶モジュールは、結露、水分 (湿気) およびその他の溶液のかかる恐れのある所では使用しないでください。
 - 液晶パネルの端子に若干でも結露を生じると、端子が電気化学反応を起こし断線の原因となりますので結露させないでください。(各製品の環境条件を、確認して使用してください。) また急激な温度変化は、結露の原因となることがありますので注意してください。
- ・動作中は、コネクタ端子、PWBおよび電子部品には触れないでください。 特にCCFLへの入力コネクタ部には高電圧が印加されていますので、感電の危険があります。 また、故障の原因ともなりますので注意してください。
- ・液晶モジュールは、製品毎に規定された駆動dutyで駆動するよう設計されております。 他のduty比で動作させた場合、故障の原因となる場合がありますので注意してください。 1/200duty駆動: GMF64020ABTW
 - 1/240duty 駆動: GMF32024ABTW、GMF32024BSLY、GMF32024HBTW、GMF32024HFTW、GMF32024JBTW GMF32124JBTW、GMF32024JFTW、GMF32124JFTW、GMF32024KFTW、GMF32124KFTW
- ・液晶パネルに直流成分が印加されると、電気化学反応を起こし寿命が急速に劣化します。 液晶パネルに直流成分の印加防止および液晶モジュール内のCMOS - LSIのラッチ アップ現象を避けるため、GMFシリーズの液晶モジュールにおいては、下図に示す電源オン、 オフシーケンスを行ってください。
 - (ロジック用電源(VDD)が安定する前に、液晶駆動用の電源(VEE, Vo等)や各信号を入力すると、内部で使用しておりますLSIがフローティング現象やラッチアップ現象により破損する場合があります。)

実装上の注意

- ・モジュールを絶対分解しないでください。
 - 分解した後、再び組み立てて動作不良となった場合は、責任を負いかねますのでご了承ください。
- ・回路にCMOS LSIを使用しておりますので、静電気が帯びないよう注意してください。 作業者の体をアースバンドにて接地し、静電気の起きにくい衣服を着用するようにしてください。
- ・液晶モジュールは、四隅の取り付け穴を利用して機器に取り付ける構造となっております。 同一平面に固定して、液晶モジュールに"そり"や"ねじれ"などのストレスが加わらない ように注意してください。
 - " そり " や " ねじれ " などのストレスが加わると、液晶の色変化や破損の原因ともなりますので注意してください。
- ・表示面に使用している偏光板や液晶パネルの保護のため、透明アクリル板などの保護パネルを 設けてください。
 - また、液晶モジュールにストレスが加わらないよう保護パネルと液晶モジュールの間には隙間を設けてください。
- ・液晶モジュール内に"ゴミ"や"ホコリ"が入ると、表示に悪い影響を及ぼすことがあります。 "ゴミ"や"ホコリ"の多い場所で使用されるときには、防塵対策を充分考慮してください。
- ・液晶モジュールの筐体の樹脂フレームおよびメタルフレーム部は、外観検査の対象として おりません。
 - 小さなキズ等がつくことがありますので、実装時には樹脂フレームおよびメタルフレーム部が 見えなくなるように設計してください。
- ・バックライトにCCFL、LEDを使用している液晶モジュールでは、光源周辺は発熱いた します。
 - 使用中に液晶パネル面が、各製品の環境条件の周囲温度(動作時)を越えないように放熱に 配慮してください。
- ・液晶モジュールの裏面または側面では、若干のバックライトの光漏れがありますので光により 劣化しうるような部品を周囲に設置しないようにしてください。
- ・CCFLを交換可能なモジュール(GMF32024HBTW、GMF32024HFTW)について CCFLを交換する際は、CCFLの割れ、液晶モジュールへの衝撃等の無いよう取り扱いには 充分注意してください。
- また、CCFLは高電圧が印加されているため、必ず電源をoffにしてから交換してください。
- ・静電気による L S I の誤動作や破損を防止するため F G端子または取り付け穴の P W B パターンを接地してください。(対象液晶モジュール: GMF32024ABTW)

安全上の注意

- ・液晶モジュールで使用していますメタルフレーム等のエッジ部には、加工時のバリがある場合 がありますので怪我には十分注意してください。
 - また取り付けの設計に際しては、メタルフレーム等の金属部分 (特にエッジ部分)にコネクタ 用ケーブルが接触しないようにしてください。
- ・モジュール内で電源ライン等の短絡不具合が生じた場合、モジュール内には保護回路が入って おりません。
 - セット側電源に、短絡に対するヒューズまたはシャットダウン回路等による安全対策を施してください。

本データシート記載事項及び製品使用にあたってのお願いと注意事項

- 1)データシートに記載している技術情報は、代表的応用例や特性等を示したもので、 工業所有権等の実施に対する保証または実施権の許諾を行うものではありません。
- 2)データシートに記載している製品、仕様、特性、データ等は、製品改良等のために 予告なしに変更することがあります。ご使用の際には必ず最新の仕様書によりご確 認下さい。
- 3) データシートに記載している製品のご使用に際しましては、最新の仕様書記載の 最大定格、動作電源電圧範囲、放熱特性、その他使用上の注意事項等を遵守いただ くようお願いいたします。なお、仕様書記載の最大定格、動作電源電圧範囲、放熱 特性その他使用上の注意事項等を逸脱した製品の使用に起因する損害に関しては、 当社は責任を負いません。
- 4)データシートに記載している製品は、標準の一般電子機器の用途(OA機器、通信機器、AV機器、家電製品、計測機器)に使用されることを目的として製造したものです。
- 5)上記の用途以外の用途および高い信頼性や安全性が要求され、故障や誤動作が直接 人命または人体に影響を及ぼす恐れのある用途(航空機器、宇宙機器、輸送機器、 医療機器、原子力制御機器等)に使用することを計画されているお客様は、事前に 当社営業窓口までご相談下さい。
- 6)データシートに記載している製品のうち「外国為替および外国貿易法」に該当するものを輸出するときまたは日本国外に持ち出すときは、日本政府の許可が必要です。
- 7) データシートの全部または一部を転載または複製することはかたくお断りします。
- 8)このデータシートの最新版は、下記のアドレスから入手できます。

ホームページアドレス: http://www.stanley-components.com